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Abstract. The effects of turbulence modeling on the prediction of equilibrium states of turbulent buoyant

shear flows were investigated. The velocity field models used include a two-equation closure, a Reynolds-

stress closure assuming two different pressure-strain models and three different dissipation rate tensor

models. As for the thermal field closure rnode[s, two different pressure-scrambling models and nine dif-

ferent temperature variance dissipation rate (&,) equations were considered. The emphasis of this paper

is focused on the effects of the g0-equation, of the dissipation rate models, of the pressure-strain models

and of the pressure-scrambling models on the prediction of the approach to equilibrium turbulence. Equi-

librium turbulence is defined by the time rate of change of the scaled Reynolds stress anisotropic tensor

and heat flux vector becoming zero. These conditions lead to the equilibrium state parameters, given by

/3/g, P#/&_, R = (O_"/2e#)/(k/g), Sk/e and G/e, becoming constant. Here, /3 and /5o are the production

of turbulent kinetic energy k and temperature variance 02, respectively, g and e0 are their respective dis-

sipation rates, R is the mixed time scale ratio, G is the buoyant production of k and S is the mean shear

gradient. Calculations show that the g0-equation has a significant effect on the prediction of the approach

to equilibrium turbulence. For a particular e0-equation, all velocity closure models considered give an

equilibrium state if anisotmpic dissipation is accounted for in one form or another in the dissipation rate

tensor or in the e-equation. It is further flmnd that the models considered for the pressure-strain tensor

and the pressure-scrambling vector have little or no effect on the prediction of the approach to equilibriurn
turbulence.

Introduction

Homogeneous turbulent flows played a central role in the modeling and analysis of complex inhomogeneous

turbulent flows (Rogallo and Molt, 1984: Speziale, 1991 ). The reason is that these homogeneous flows pro-

vide a great deal of insight into key parameters characterizing turbulence in a simplified setting which quite
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often gives rise to closed-foml solutions in the commonly used turbulence models. For turbulent shear flows

without buoyancy, Lee and Reynolds (1985) and Rogers et al. (1986) have conducted direct numerical sim-

ulations (DNS) of such flows, and experimental investigations were carried out by Harris et al. (1977), Rohr

eta/. (1988a) and Tavoularis and Karnik (1989). These im/estigations provided much-needed insight into the

understanding of the evolution of homogeneous turbulence and its approach to equilibrium.

For turbulent buoyant shear [tows, DNS have been performed by Gerz eta/. (1989), Gerz and Schumann

( 1991 ) and Kaltenbach et al. (1994), while Piccirillo and van Atta (1997) and Rohr et al. (1988b) ha'_'e exper-

imentally studied the buoyancy effects on stratified turbulent shear flows. According to these investigations,

stable stratification weakens isotropization. Therefore, the isotropic dissipation rate model is not adequate

to describe the evolution of buoyant homogeneous turbulence. Recently, So el al. (1999) conducted a nu-

merical simulation using different turbulence models and assessed the performance of cmtain anisotropic

dissipation rate models. Their investigations revealed that there were difficulties still in the prediction of

counter-gradient heat flux and the onset of internal gravity waves in buoyant shear flows. However, it should

be pointed out that all the investigations mentioned above were only carried out tot the short time period (or

the near-field region of experiments), therefore, turbulence evolution for the hmg time was not reported due

to experimental and numerical difficulties.

An important property of homogeneous turbulent shear flows is the appearance of the dynamic state pa-

rameters, which tend to approach equilibrium values in the long time limit. The equilibrium states provide

an important benchmark in the calibration of closure models. For non-buoyant turbulent shear flows, Abid

and Speziale (1993) calculated the equilibrium states for channel flows and homogeneous turbulent shear
flows using Reynolds-stress closures. The fixed points associated with the equilibrium states for several ho-

mogeneous shear flows were determined from bifurcation diagrams (Speziale and Mac Giolla Mhuiris, 1989:

Speziate, 1991' Speziale et al., 1996), and they were used to assess the stability of higher-order models

and their ability to predict the correct equilibrium values. Recently, using representation theory, Jongen and

Gatski (1998) also showed that equilibrium turbulence of homogeneous shear flows is defined by the state
parameters, /5/g and Sk/_'. Here, /5 is the production of turbulent kinetic energy k and S is the mean shear

rate of the mean flow. They, further derived a general algebraic relation between the state parameters based

solely on the form of the pressure-strain rate model, and without having to specify a modeled g-equation

for the dissipation rate of k. Their analysis gave the same equilibrium values as those predicted by the
Reynolds-stress turbulence closures.

Tavoularis and Corrsin ( 1981 ) conjectured that equilibrium states also exist for buoyant shear flows, how-

ever, they take a longer time (or distance) to achieve. Due to the interaction between shear and buoyancy, the

approach to equilibrium turbulence for buoyant shear flows is much more complicated. Up to now, even the

parameters that characterize the equilibrium states are not known precisely and there was a lack of reliable

experimental data on the equilibrimn states of turbulent buoyant shear flows.

Numerical modeling of buoyant shear flows, even under the assumption of incompressibility, is quite

a bit more complicated than pure shear flows. In addition to closure models for the Reynolds-stress

equation, other models for the equations governing the transport of the Reynolds heat-flux and the asso-
ciated dissipation rate (s:o) of the temperature variance (02) need to be invoked (Launder, 1978, 1989).

Furthermore, buoyancy effects should also be modeled into the pressure-strain term based on the argu-

ment that buoyant forces enter into the Poisson equation for the fluctuating pressure. A modeled buoy-
ancy term was also added to the e-equation to account for buoyancy effects in the calculation of _'.

It should be noted that this treatment of buoyancy effects on the turbulence field is rather incomplete,

because the interaction between shear and buoyancy is highly nonlinear. This treatment also ignores

the tight coupling between the Reynolds-stress equation and the heat-flux equation, because it simpli-

ties the coupling between the different terms in these equations. Since the exact form of the modeled

+--equation is not important in the prediction of the equilibrium states of pure shear flows, would the

same conclusion be true lbr the g,-equation for buoyant shear flows. In view of this, there is a need

to explore the ability of commonly used turbulence models to predict the equilibrium states of buoyant
shear flows.

An analysis along the lines proposed by Jongen and Gatski (1998) was used to investigate the equilibrium

state parameters of buoyant turbulent shear flows (Zhao et al., 2001 ). The requirements that dbii/dt = 0
and dqi/dl = 0 lead to P/& Sk/& /5 /&_, R = (02/2g0)/(k/_ ") and G/_: becoming consta_nt at equilibrium.

Here, bij = u,.u_/2k -a_//3 is the scaled Reynolds stress anisotropic tensor, qi = .,0/(/,02) r/e is the scaled



TurbulenceModelingEffectsonthePredictionofEquilibriumSt:liesofBut)yamShearFIm_s 401

heatfluxvector,ltilt j is the kinematic Reynolds stress tensor, uiO is the heat flux vector, /5o is the pro-

duction of the temperature variance 02, so is its dissipation rate, R is the mixed time scale ratio and G

is the buoyant production of k. Therefore, the objective of this paper is to examine the effects of turbu-

lence modeling on the prediction of these equilibrium states. It can be classified into the following tasks.

The first task is to investigate the effect of the modeled s_-equation on the prediction of equilibrium states.

A second task is to study the effect of modeling the pressure-strain tensor. The third task is to examine

the effect of the model invoked for the pressure-scrambling vector. Finally, a fourth task is to investigate

the influence of anisotropic dissipation modeling. Since this model affects the modeled s-equation, the

effect of this equation in the context of anisotropic dissipation modeling will be examined also. Two dif-

ferent turbulence closure schemes are used in this study, a k-s" and a Reynolds-stress closure. The k-s

closure is used to study in detail the effect of the modeled so-equation, while the Reynolds-stress closure

is used to examine the effects of pressure-strain models, pressure-scrambling models and dissipation rate
tensor models.

The Modeled Equations

Reynolds Averaged Equations

The flow considered is a homogeneous buoyant turbulent shear flow where the Boussinesq approximation

is assumed valid. According to the studies of Sommer and co-workers ( 1995, 1997), two-equation heat flux

models are not appropriate for buoyant shear flows, because they failed to predict the onset of counter-

gradient heat flux and the presence of internal gravity waves correctly. Therefore, a Reynolds heat-flux model

has to be assumed instead. Invoking the Boussinesq approximation, the incompressible Reynolds-stress and

heat-flux modeled transport equations can be written for a homogeneous shear flow as

d_iuj
- Pii + Fltli - st7 + Gij , ( I )

dt

dui 0 '0(-) _ l_io "OUi4- _oi + G_# , (2)
dt -- --lliUj _ _)''/

where Ui and tti are the ith component of the mean and fluctuating velocity, (-) and 0 are the mean and

fuctuating temperature, t is time, xi is the ith component of the coordinate, P(j = -uiuk (OUi/Oxk) -

ttittk ('OUi/OA'k) is the shear stress production tensor, G_i = -flgiltjO -/4gjtti 0 is the buoyant production of

the Reynolds stresses and G#i = -/4gi 02 is the buoyant production of the heat fluxes. Here,/4 is the coeffi-

cient of thermal expansion of the fluid and gi is the gravitational vector, The pressure-strain tensor 1-I6 and

the dissipation rate tensor e_j in (1) need modeling. The ¢'_i term includes both the pressure-scrambling vec-
tor and the molecular dissipation of the heat fluxes. Its writing was suggested by Launder (1978). Therefore,

its modeling should include the effect of molecular dissipation on the heat fluxes. These models are briefly
discussed below.

Pressure-Strain Models

For buoyant turbulent flows, the term FIii can be represented by three parts: they are the slow part FI! st

rapid part PllR) and the buoyant part RI B). The slow and rapid parts can be modeled as in non-buoyantthe

flows and the buoyant part can be modeled by' relating it to the generation/destruction of the Reynolds
{S) {R)

stresses by buoyancy (Launder, 1978). Two different models for FI_/ + F/_i are investigated; they are the
linear IP model of Launder eta/. (1975) and the nonlinear SSG model of Speziale et al. ( 1991 ). These models

plus the buoyant model, FI IB_= C6(G_i - 2G&i/3), can be written as follows. The complete expression tbr
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I-l,:i. invoking the IP model for l-](s)ijJr- ]-]!R)u"is given

l]ij -= - Cle`bij + C2kS(i + C3k

+ C4k (t,_kWj_+ bjkW_k)

where Ct = 3.6, C2 = 0.8, C_ = 1.2, C4 = 1.2. C6 =
(sl I-I!R) iscorresponding expression for Hij, invoking the SSG model for Hij + n '

n,:,= - (c,+c; +C2kS,j+C3k t,,,Sjk+bjkS, -
I 2

- Cak ( bik Wjk - I_/kWik ) + C5_ ( bikbk j - _b,,,,,b,,,,,6,j ) - C6 ( G _i - _ G _(i ) •
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by

3 /

_G@ , (3)

0.3 and G = Gii/2 is the buoyant production ofk. The

(4)

The model constants are specified as Ci = 3.4, C2 = 0.36, C3 = 1.25, C4 = 0.40, C5 = 4.2, C[ = 1.8 and

C6 = 0.3. In these equations the kinematic strain rate (Sij) and rotation rate (W,j) tensors are defined as

Sij = (OUi/Ox/+ OUj/Oxi) /2 and Wd = (i_Ui/&':i - oUj/ari ) /2, respectively.

Dissipation Rate Models

The dissipation rate tensor e`0 can be modeled using three different approaches. They are the isotropic model
(Kolmogorov, 1941) and two different algebraic models (Hallback et al., 1990; Speziale and Gatski, 1997).

These models are given here for reference without derivation. The Kolmogorov (1941) isotropic model is

given by

2

s_i = _e`_U. (5)

while the anisotropic algebraic models of Hallback et al. (1990) and Speziale and Gatski (1997), designated

as HGJ and SG, respectively, can be written in the general form as

2

s, i = _e`6_i +2sd, 2 . (6)

In the HGJ model, d(i is expressed as a series of bU, while in the SG model, d U is expressed in terms of SU

and W#. For the HGJ model, the expression for d o is given by

do = _ 1+ _rl - -j b6 - bikbki -- 31-'13(i

where a' = 3 has been assumed. The SG modeled equation for d,j is given by

+2C_. C_,5+ ,_/e` - I _ S,'kSkj -- _SklSk16(i , (8)

7 _ 3o ,where a3 = 0.6, A I = cO + and A2 = _o_3 - _-. The coefficient Cj,_ is defined as

15(c,.5+_/s, l) l+2 _ _- - ,7_ • (9)- C_5+P/s-I -3 C,_5+P/s,-1

15
Two new constants are introduced and they are C_5 = 5.80, A3 = i3-oO - 1. The dimensionless strain invari-

ants are defined by _lt = (SiiSij)_/2(k/e) and _ = (Wii Wii)l/2(k/e`).
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The s 0 model requires knowledge of e for closure. For the HGJ model, the e-equation solved is the
conventional equation, which after modification fbr buoyant flows becomes

de
9

F 6,"_ e --

C_I /3-C_.2_-Cs_ (10)

where /3 is one-half the trace of Pij. The model constants take on the following values: C_;l = 1.44,

Ce2 = 1.83 and C_3 = 1.44. Note that (10) does not include the effect of dij, whose influence only contributes

to the calculation of sij through (6). This, however, is not the case for the SG model, and the s-equation
solved is modified to give

82
-- -- , e

dSdt - C_. I k_/5 _ 2 (1 + V) edi). Sij, - Cs__ _, - C_ 3 _. [3gi u iO , ( 1 1 )

3 14 16
where y = a (_o13 - Tg) and the constants take on values C,I = 1.0, CF2 = 1.83 and C,:3 = 1.44. In this

equation the effects of d!i are accounted for through the term involving both d_i and S0. Thus. the anisotropic

effects of s(i are given by (6) as well as accounted for in the determination of s. This is a major difference
between the HGJ and SG models.

Heat Flux Models

cD IS)Just like Fit/, the term O_i can again be partitioned into three parts, a slow part -0i , a rapid part _I_R_, and

_s) However, Lumley and Khajeh-a buoyant part • CB_ Usually, the Monin (1965) model is invoked for "P_i- Oi "

Nouri (1974) proposed a quadratic modification to Monin's (1965) model to account for the anisotropy of
cb (s) -Clo_UiO/k ' .the heat flux. Their proposal leads to _oi = - 2ClosbijujO/k. The rapid part is usually mod-

cbIRIeled by _0i = b_'i(OUk/OXm) with different models proposed for bmki"Recently, Craft and Launder (1989)

derived a fairly complete expression for b_'i based on the realizability condition in terms of Schwarz's in-
equality tk_r the heat fluxes and by imposing additional conditions. Their expression involves quadratic terms

of b(i in addition to terms linear in the heat flux. If all quadratic terms involving turbulent stresses and heat

fluxes are neglected and the model cbIB_ " , "'O-_---- _sogiP - (Launder, 1978) is invoked for the buoyant part, the--oi

complete model for O_i can be written as (So and Speziale, 1999)

e -- OUi OUI

0(4i = -Cl°_'ltiO+C2°ltiO_x;" _ j +C_euiO- " Oxi +Cs_gi[40-. (12)

where C5o = C2o is recommended by Launder (1978). If the term involving C3o is set to zero as suggested

by Launder (1978), the other constants would take on the following values, Clo = 3.28 and C20 = 0.40.

On the other hand, including the C3o term leads to the recommended constants Cle = 3.28, C2o = 0.80 and
C,so = -0.20.

The linear model given in (12) is by no means unique. For example, Shabany and Durbin (1997) sug-

gested a slightly different linear model for qbtR_ Their proposal consists of three terms, the C_o and C3o term0/ "

plus a term involving the mean temperature gradient, C4o_(O(O/'OXi). However, in their calculations, they

have set C4o = 0. Therefore, in reality, their suggested linear model for "niR) is the same as that given in (12)._Oi

A comparison of the effects of the different terms in (12) including a C40 term on heat flux modeling has

been attempted by Wikstrom et al. (2000). Their comparisons were made with DNS data, whenever avail-

able, obtained fbr a homogeneous shear flow, a plane channel flow and a heated cylinder wake. In addition,

they have also considered models where the C1_ term was modified by the time scale ratio R. Their results
showed that if the C4o term is included in (12), then C__0and C3_ have to be set equal to zero. Otherwise,

the model performance would deteriorate significantly. A model that performs well for all test cases was one

given by modifying C_o with R and setting all other constants to zero. Other models perform differently for
the test cases considered.

As a first attempt, the present study focuses on (121) only. It should be pointed out that the proposed model

includes the effect of molecular dissipation on the heat fluxes and is consistent with those used by other re-

searchers. All calculations reported in this paper, unless specified explicitly, were carried out assuming C3_

to be zero. The effect of the C30 term on the prediction of equilibrium states is investigated separately.
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Table I. A :,;tlnlmary of the ,b+-equation illodel constants proposed by ,,ariou,; researchers.

Modeled e0_-equation C,II (',12 C,/_ C,t 4 ('d5

NI_L _Ncwman et al., 19811 2.(}0 0 (1 2.(12 (t.88

l(l. IElghobashi and Launder. 19831 1.80 {1 0 2.2(t (I.80

GJK [Gibson eta/., 19871 0 1.7(I 1.40 2.1t0 1.80

AY (Yoshizawa, 19881 1.20 0 (I.52 1.2(I (I.52

JM (Jones and Musonge, 19881 0 1,7(I 1.40 2.00 0.52

NK (Nagano and Kim, 19881 1.8(I 0 (t.72 2.20 0.80

('L ICraft and Launder, 198q) 0 1.30 0 2.00 0.92

YNT iYousscf et al., 19921 1.7(I 0 0.64 2.(10 0.90

SSZ [Solnmer et al., 1997_ I) 1.20 (t.72 2.20 0.811

In view__of the temperature coupling between (1) and_(2), their closure requires knowledge of the varia-

lion of 02. This can be obtained by solving the modeled 02 and _0 transport equations. Nine different sets of

modeled equations are summarized in So and Speziale (1999) and they can be written in a general form as

d# 2

- 2/5, - 2_.,. (I 3)
dt

b ) ,, - . g ~ ,5"

_ _ - ,5,.dt CdI___P¢_+Cd2 +C,I_kP- (141

where /50 = -uiO(O(-)/Oxi). The different model constants adopted for pure and wall shear flows in the nine

sets of modeled e,-equation are summarized in Table 1, where abbreviations (shown in Table 1) are used

to denote the different models. These models are not completely independent of each other. For example,
NLL and EL belong to one group, GJK, JM and SSZ another, AY, NK and YNT a third and CL is the fourth

group. Members within a group only differ in the values of the constants chosen. In view of this, only one
representative member of each group needs to be investigated.

Numerical Solution

Different combinations of the velocity governing equations given above will give rise to different Reynolds-

stress closure models. For the sake of clarity, the following abbreviation are adopted to designate the various

Reynolds-stress closures used for the calculations of turbulent buoyant shear flows. The 2-Eq designation
is used to denote a two-equation model, which solves the trace of (I) and (10), the IP designation means

adopting (31, (5) and (10), while SSG means the use of (4), (5) and (10) in the equation set. It should be

noted that, in the 2-Eq model,/5 is approximated by C t, (k2/E)SuSij with Cz, = 0.09 and the constants asso-

ciated with ( I 0) are given by Cd = 1.50, C__, = 1.90 and C,3 = 1.50. Other designations used are SSG/HGJ

and SSG/SG. They signify the solution of the equation set (4), (6), (7) and (10) and the set (41, (6), (8), (9)

and ( I I ), respectively. Of course, in all these closures, ( 1), (2) and ( 12)-(14) are also solved simultaneously.

These closures differ in the modeling of the pressure-strain and dissipation rate tensors, and the pressure-

scrambling vector. Comparisons of these models can. therefore, shed light on their ability or inability to
predict equilibrium states of turbulent buoyant shear flows.

The equations constitute a set of coupled initial value problems. They are solved using a Bulirsch-Stoer

method (see Press et al., 1986) with variable step size in order to achieve the desired accuracy with as few

steps as possible. Calculations were carried out with the dimensionless equations. The physical equations

were normalized assuming the length scale to be given by L. the time scale by l/S, the velocity scale by
AU = SL and the temperature scale by /',(9 = SL, where S = dU/dz. Therefore, the dimensionless time is

given by r = St. It should be pointed out that even though the governing equations are not dependent on the

molecular Prandtl number, Pr, the initial conditions are. The Pr dependence comes in through the specifi-

cation of the initial _:_, which according to its definition involves the molecular thermal diffusivity. In view

of this, Pr only affects the turbulence calculations in the initial stage of development but not in the long

time period. The initial conditions are different for different flow cases. Since the present study examines the
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Table 2. The calculated values of I ['/s),,_ and (Sk/_'_-_ liar homogeneous shear fl_rs.

Reynolds-stress closures

2-Eq

closure 1P SSG SSG/HGJ SSG/SG

(/5/s _-. 1.886 1.80(I 1.886 1.886 1,901

(Sk/s-)_ 4.578 4.927 5.760 5.938 5.983

approach to equilibrium turbulence of the cases considered by So et al. (1999), the same initial conditions

specified there are used here, For most cases, unless specifically stated, Pp"= 5 is assumed,

Effect of Reynolds Stress Closures on the Equilibrium States of Pure Shear Flows

The performance of different turbulence models in the predictions of homogeneous shear flows, homoge-

neous buoyant flows and homogeneous buoyant shear flows has been critically examined (So et at., 1999)

and the calculations were evaluated against DNS and experimental data. However, the approach to equilib-

rium turbulence and the ability of these closure models to predict equilibrium states have not been examined.

This paper proposes to examine the equilibrium states of stably stratified shear flows. Therefore, betbre pro-
ceeding to analyze buoyant shear flows, the effect of the different Reynolds stress models on the prediction

of equilibrium states for pure shear flows has to be examined first.

For homogeneous shear flows, the approach to equilibrium turbulence is signified by db(i/dt = 0. This
leads to /5/_ and Sk/e becoming constant as time goes to infinity (Jongen and Gatski, 1998). It may take

a long time to reach this state, but large eddy simulation results (Rogers et al., 1986) show that such a state is

achieved at equilibrium. Based on this condition and the governing k and e equations, the asymptotic values
for/5/_ and Sk/e can be determined. According to Jongen and Gatski (1998), the condition d(Sk/e)/dt = 0

is valid at equilibrium. Then it follows that

d(Sk/_) S dk Sk dr
-0. (15)

dt e dt _:2 dt

Substituting the trace of ( 1) and (10) into (15) yields the asymptote, (/5/_), = (C_2 - 1)/(C_t - 1). An ex-

plicit expression for Sk/e is possible under the assumption of /5 = C;_(k2/e)S 2. This leads to (Sk/e),,, =

[(C_,2- I)/Cz_(C_:I- 1)] I/2. Using the values of the constants specified for (10), (/5/e),_ = 1.886 and

(Sk/e),_, = 4.578 is deduced. This shows that production does not balance dissipation as equilibrium is

approached. Instead, at equilibrium, /5 settles to a higher value than E.

The next task is to evaluate the asymptotic values determined from the different Reynolds-stress closures.

Only the model calculations from SSG and IP are considered, but they include the use of three different e(i

models, i.e. those given by (5), (6) and (7), and (6), (8) and (9), respectively. The calculations are compared

with the 2-Eq model results in Table 2. For the present calculations, the values of C_l and C_2 adopted for the
2-Eq, IP and SSG closures do not differ by much. Consequently, the asymptotic values of/5/_7 determined

from the model calculations cluster around 1.80. The correctness of these asymptotes for homogeneous

shear flows remains to be verified. However, it should be pointed out that the experimental measurements

of Tavoularis and Karnik (1989) indicate that (Sk/e),_,_ should fall between 5.0 and 6.0 and Speziale and

Gatski (1997) also obtained a value for (Sk/e),_ close to 6.0. Based on this data, it appears that both the IP

and the SSG results are fairly reasonable, irrespective of the dissipation rate tensor model assumed. All clo-
sure models considered predict a (/5/e)_ value close to 1.9 instead of 1 as a production-balance-dissipation

tnodel would irnply.

Equilibrium States of Buoyant Shear Flows

For buoyant shear flows, the approach to equilibrium is further complicated by the presence of the thermal

field. What additional parameters besides bij, P/e and Sk/e should be used to characterize the equilibrium
states? The DNS data of Gerz et al. (1989) and the experimental measurements of Sirivat and Warhafl (1983)
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Figure I. Variation of the components of/;,i_ with time assuming the JM model.

could be interpreted to imply that the time rate of change of b0 and qi should be zero as equilibrium is ap-
proached. Furthermore, as the study of Zhao et al. (2001) showed, equilibrium buoyant turbulence as defined
by dbij/dt = 0 and dqi/dt = 0 will give rise to the state parameters /3/E, Sk/e, Po/eo, R and G/e becom-
ing constant. Thereibre, this section investigates the approach to equilibrium turbulence as predicted by the
different closure models. In anticipation of results to be presented later, only the velocity model calcula-
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tions of IP, SSG, SSG/HGJ and SSG/SG, assuming an e,0-equation model given either by JM or NK for

a given Richardson number, Ri = flg(d(-)/dz)/(dU/dz) 2 = 0.5, and Pr = 5, are shown in Figures 1-8. This

calculated case is identical to the DNS data of Gerz et al. (1989). The conclusions drawn from NK are also

applicable to NLL and CL. Therefore, results obtained using NLL and CL and other members of the same

group are not shown for the sake of brevity.

The time variation of the components of b(i and qi calculated using a number of velocity models and
the JM model for the eo-equation are plotted in Figures 1 and 2, respectively. Only the results for the

SSG, SSG/HGJ and SSG/SG are shown. It is obvious that the Reynolds stresses (Figure 1) have reached

their respective constants as early as r = 100. As for the Reynolds heat fluxes, the stream component ql

(Figure 2(a)) behaves like the Reynolds stresses, but the normal component q3 (Figure 2(b)) reaches a con-

stant value at r _- 160. Thus, equilibrium is achieved only alter r = 160. Once dbti/dt = 0 and dqi/dt = 0
have been achieved, R also reaches a constant value (Figure 3). The constant value reached is different for
different velocity models. This is not unexpected, because the equilibrium values of (fi/s)_ and (Sk/s)_

are different for different velocity models for pure shear flows as indicated in Table I. However, constant R

does not necessarily imply that d(Sk/s)/dt will go to zero also. It follows from the definition of R that when

R and Sk/s are becoming constant, the following relation can be deduced:

d(k/_') d(O2/&_)

dt dt
- O. (16)
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Figure 2. Variation of the components of qi with time assuming the JM model.



408 C.Y. Zhao, R,M.C. So, and T.B. Gatski

0.6

R

0.5I

0.4

0.3
100

0 0 0 0 0 0 0 0 0

Ri = 0.5

JM model

SSG

SSG/SG
SSG/HGJ

IP

0 0 0 0 0 0 0 0 0

i _ j i _ I D _ a _ i i ° _

120 140 160 180

T

Figure 3. Variation of R ,xith time assuming the JM model.

20O

lO

Sk
E

o o o o o o o o o

Ri = 0.5

JM model

---e--- SSG/SG

100 120 140 160 180 200

Sk
E

(b)

180

160

140

-- 120

100

80

60

Ri = 0.5

JM model _ .i"
-_ SSG S J

100 120 140 160 180

T

Figure 4. Variation of Sk/E with time assuming the JM model.

200



Turbulence Modeling Effects on the Prediction o1 Equilibrium States of Buo)am Shear Flows 409

m

Therefore, plots of Sk/e and S02/e versus r are also shown in Figures 4 and 5, respectively,, to illustrate their

behavior at large r. The results show that only the SSG/SG model yields constant Sk/e (Figure 4(a)) and

S02/_ (Figure 5(a)) for r > 100. All other velocity models tested give an increasing Sk/e and SO2/e as r

increases. Consequently, these results show that the combination of models SSG/SG and JM is capable of

predicting equilibrium turbulence for r > 160. Other velocity and thermal field models are not.

If equilibrium is taken to be given by b(j, qi, R, Sk/g and SO2/_, all approaching constant, then the values
of/_/e and /5/_ can be derived as follows. Substituting the trace of (1), (10L (13) and (14) into (I 6), the

following asymptotic relations are deduced for the equilibrium state parameters A/e and/_0/e,_. They are

e C_,l - 1 C_:I 1

['_ 2Cd3R(C_2- I)-2CdsR(C_I - 1)-(Cd4-2)(Csl - 1)

(2-Cdj - 2C,/2 R)( C_ j - 1)

(17)

2-C -TCd R \ l
(18)

10:

SO _-
C C C C C C _ C C
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Figure 5. Variation of SV2/_', with time assuming the JM model.



41() CY. Zhao, RM.C. So, and T.B. Galski

The expressions+(17) and (18) relate/5o/eo and/5/e to G/e and R and suggest that the equilibrium parame-

ters Po/ef+ and P/_ are constant if G/e is constant. It will be confirmed later that G/e is indeed constant at
equilibrium, just as deduced by Zhao et al. (2001).

in a buoyant flow, the normal heat flux would continue to oscillate until the collapse of turbulence (Still-

inger et al., 1983: Itsweire et al.+ 1986). Therefore, in principle, an equilibrium state could be reached only
under the condition that G/e and other relevant parameters would become constant. This calculation shows

that the SSG/SG and JM combination is able to predict/5/e, Sk/e, Po/e#, R and G/e are constant at equi-

librium, just as predicted by the analysis of Zhao et al. (2001 ). Unlike the case of pure shear flows, (17) and
(18) also depend on the constants specified in the modeled _- and e#-equation. In view of this, the constant

values reached at equilibrium will depend on how correctly the E- and _o-equation can be modeled.

Other combinations of velocity model and _-equation model will not lead to a predicted equilibrium
state. An example of one such combination (SSG and NK) is shown in Figures 6-8, where the lime varia-

tions of the components of b(i and qi, and R are plotted, respectively. It can be seen that b,:h qi and R htil to
reach their asymptotic states even for very large r (however, only the period 100 < r < 200 is shown in these
figures to illustrate the behavior).

Effect of t0-Equation Modeling

The above analysis on buoyant shear flows shows that at equilibrium b_i, qi, /5/e, Sk/e, _'_/e#, R and G/_

arc constant. Therefore, the effect of the e,-cquation on the prediction of the equilibrium state parameters

is examined next. The calculations were mostly carried out using the 2-Eq and the Reynolds-stress models.

In these calculations, the heat flux model invoked was that given by (12) with C3o set to zero. All a_-

equation models listed in Table 1 were investigated using the 2-Eq model. Only a few were examined using
the Reynolds-stress models. The results for the 2-Eq model are shown in Figures 9-11, while those tbr the

Rcynolds-stressmodels are plotted in Figures 3-5 and 8. From this point on, only the equilibrium values of

R, Sk/_ and S02/eo versus Ri are plotted. Their approach to equilibrium is not displayed because most have
been shown in Figures 1-8.

The 2-Eq model calculations were carried out specifying Pp"= 5. Results show that not all modeled

_:,-equation can predict equilibrium turbulence. Of the four different groups of _'#-equations investigated,

only three predict equilibrium turbulence for 0 <_ Ri _< 1. The value of R is plotted in Figure 9 tor the six

e_-equation __models that yield equilibrium turbulence. Figures 10 and I1 show the equilibrium values for

Sk/6 _and S02/E'_j, respectively, over the same range of Ri. The R, Sk/e and S_-/e# thus calculated are differ-

ent for different _#-equation model. In general, the values predicted by the CL model are greater than those

given by the other models. Four models, GJK, JM, NK and YNT, yield very similar results, however, SSZ
gives equilibrium values that are consistently higher than those obtained from GJK and JM. The correctness

of these predictions will have to be verified by DNS data or experimental measurements.

Not all Reynolds-stress closures can predict equilibrium turbulence with the four groups of e_-equations

listed in Table I under the conditions db(i/dt = 0 and dqi/dt = O. Those _:_-equations that cannot give equi-

librium turbulence with the 2-Eq model also fail with the Reynolds-stress closures. Among the group of

a_-equation models that can predict the approach to equilibrium turbulence, only the results of JM are shown

because equilibrium is reached alter a relatively short period of time. It took much longer lime for GJK and
SSZ to yield equilibrium turbulence. The results shown in Figures 3-5 are lot the case where Pr = 5 and

Ri = 0.5 (Gerz etal. 1989). All Reynolds stress models tested_ clearly show that R is constant (Figure 3).

However, only SSG/SG give constant values for Sk/_: and SO2/eo (Figures 4(a) and 5(a)). The parameters

Sk/_ and S02/_, continue to vary with time long after R becomes constant for other Reynolds-stress models

(Figures 4(b) and 5(b)). In other words, equilibrium has not been reached. It will be shown later that when

R, Sk/e and S02/r_ become constant, so do [_/e, [_/_ and G/a. Other 6:o-equation models fail to give

equilibrium prediction. A representative plot of this behavior is shown in Figure 8.

According to the heat transfer studies made by the researchers of the nine different modeled _:_-

equations, setting Cj2 = 0 gives better results for wall-bounded flows, while setting C_II = 0 yields good
agreement with the turbulence statistics of free shear flows. The other constants are found to have lit-

tle effect on the calculations as long as they do not differ by much. Therelore. it appears that there is
no one single set of constants that could give reasonably good results for both wall-bounded and free
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shear flows. This is especially true when buoyancy-induced gravity waves (Sommer eta/., 1997) and
buoyant jets and plumes (Craft, 1991) are considered. In fact, Craft (1991) lk)und that the constants

C,12, C,14 and C,/5 should be modified to make them dependent on R and the stress invariants. With
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this tmderstanding, the inability of NLL, EL, AY, NK and YNT to predict equilibrium turbulence com-

pared with JM is not surprising. As for CL, it assumes C,t3 = 0. Therefore, it is reasonable to expect
CL to perform differently from JM. The only difference between GJK, SSZ and JM is in the values

assigned to the constants Cd2 tO Cd5. For example, GJK assumes a value of 1.80 for C,15, while JM
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takes on 0.52. On the other hand, SSZ and JM invoke different constants for Cj: and Cjs, Since all
three models, GJK, JM and SSZ, are formulated for free turbulence, the present study shows that the
choice of constants is important. Furthermore, the constants play a crucial role in the prediction of
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the approach to equilibrium turbulence and of the asymptotic values of the state parameters in buoyant
shear flows.

Unlike the modeled e-equation in the pure shear llow case, the modeled Eo-equation affects the pre-

dicted values of the state parameters and directly influences the prediction of the approach to equilibrit m
turbulence.

Effect of Heat Flux Modeling

Having examined the effect of the e0-equation model, the next task is to investigate the effect of dPOi model-

ing. The above analysis is carried out with C3o = 0 in (12). In this section the effect of including this teim

in the qb_i model on the prediction of equilibrium turbulence is studied. It should be pointed out that, in

the calculations presented above, where C3o = 0 was specified _in(12), both the IP and SSG closures using
0"JM yield equilibrium turbulence where bLi. qi, R, Sk/e and S "/e0 are constant. Equilibrium turbulen:e

was predicted for the range of Ri investigated. Therefore, only these two closures are investigated in detail
in this section. The modeled equations solved are the same as before, except that the C30 term is retained

in (12). The case studied is the DNS turbulent buoyant shear flow of Gerz et al. (1989) where Pr = 5.0 and

Ri = 0.5. When the C3o term is added to (12), both IP and SSG closures predict equilibrium turbulen,:e

provided the value of C2o was modified to be 0.8. As for the value of C_0, it was found that a range _f

values would lead to the prediction of equilibrium turbulence. The plot of R versus C30 for the SSG cl>
sure using JM is shown in Figure 12. The figure only shows the values of R for Ri = 0.1,0.5 and 1.0. This

range of C30 values is not consistent with those recommended by Launder (1978). Therefore, these calc J-

lations tend to show that, when the pressure-scrambling term is modeled with the C3o term included, the

IP or the SSG closure still predicts an approach to equilibrium turbulence for all values of Ri tested f,)r

a given set of C2# and C3o. However, the value of R calculated differs depending on the choice of con-

stants. In other words, the addition of the C3_ term to (12) has an appreciable effect on the prediction of
equilibrium values. This effect is not desirable because it varies with the choice of C30. Furthermore, it is

not known which C3o would be more suitable for the developing stage of buoyant shear flows and for wall
shear flows.

Effect of Pressure-Strain Models

The velocity closures are examined next and it is mainly concentrated on the effect of the pressure-strain
models. Altogether two different pressure-strain models have been examined. These are the linear IP and

the nonlinear SSG model. Calculations were carried out using the JM model for the e0-equation. The cal-

culated equilibrium state parameters for different Ri are shown in Figures 13-16. All models (2-Eq, I_
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SSG, SSG/HGJ and SSG/SG) tested can predict constant bij, qi and R. However,_ only the 2-Eq and

SSG/SG closure are capable of predicting equilibrium behavior with Sk/e and SO2/so also becoming con-
stant (Figure 16). Together, these results show that IR SSG and SSG/HGJ fail to predict the approach to

equilibrium turbulence. In the case of IP and SSG, anisotropic modeling of the dissipation rate tensor is not
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invoked. On the other hand. anisotropic modeling of the dissipation rate tensor is assumed in SSG/HGJ and

SSG/SG. The differences are in the models assumed in d(i and in the modeled e-equation. In SSG/HGJ the

anisotropy is expressed as a function ofbij, while SSG/SG represents d,l] in terms of Sij and W(] and solved

a different g-equation. The present results seem to imply that either the form used in SSG/SG to account for
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dissipation anisotropy or the g-equation assumed is more appropriate. It will be shown in the next section
that a simple modification of the e-equation is sufficient to render IP and SSG valid in the prediction of the

approach to equilibrium turbulence. This may not be surprising since the equilibrium analysis did not need

to account for dissipation rate anisotropy.
Asymptotic values of/3/e and/r',/e, thus determined for different Ri are shown in Figure 14. In the case

of/3/& the 2-Eq prediction is of opposite trend to that given by the SSG-type closures. Instead of a decreas-

ing trend for increasing Ri, the 2-Eq result shows an increasing behavior with Ri, According to the SSG/SG

calculations, the heat flux contribution is quite small and is positive, while the shear component is large and

is negative, Therefore, the trend displays by the 2-Eq closure could not be correct. As for the behavior of
/_,/g, (Figure 14(b)), again the SSG-type closures yield a decreasing trend similar to that of/3/g. However,

the value reached at Ri = [ is muc _hsmaller than that given by the 2-Eq closure. This implies that stratifica-

tion suppresses the production of 02 more strongly than its dissipation. On the other hand, the 2-Eq closure
predicts that the production of 02 and its dissipation are roughly equal for Ri > 0.5. The behavior of G/_

with Ri is shown in Figure 15. Just as before, the values predicted by the SSG-type closures are quite similar,

while those given by the 2-Eq closure essentially decrease linearly with Ri.

Effect of Anisotropic Dissipation Rate Modeling

The next task is to examine the effect of anisotropic dissipation modeling on the calculation of equilibrium

states. Three different dissipation models are considered. The first is the isotropic model (5), the second is

that given by (6) and (7), while the third is provided by (6), (8) and (9). The IP and SSG closures are used

to carry out the calculation. In all these calculations, the JM model is invoked for the g_-equation and (I 2) is

solved with C3_ = 0. Again, the case calculated has the same initial conditions as those given by Gerz et al.
(1989).

From the above analysis, it is known that different dissipation rate models give rise to different predic-

tions of the equilibrium values. The reason why the SSG/SG closure can predict equilibrium turbulence
while the IR SSG and SSG/HGJ closures cannot is, perhaps, due to a difference in the modeled e-equation

invoked by, the closure models. The SSG/SG closure assumes ( 11 ) while IF',SSG and SSG/HGJ invoke t l0).

The difference between these two equations is the additional dtii,_i term in ( I 1). In conjunction with (8) and

(9), the leading term of d_jSij is given by a constant times kSoS(i. This term is similar to a vortex stretch-
ing term introduced by Bernard and Speziale (1992) to drive the flow to a production-balance-dissipation

equilibrium with bounded energy states. Thus (11) could be interpreted as a first attempt to account for

anisotropic dissipation, yet also serves to strain the vorticity by mean shear. The question then is could such

a term in the modeled e-equation be sufficient to remedy the shortcoming of the IP and SSG closures without

having to invoke an anisotropic dissipation rate model in ( 1) such as given by (8) and (9)'? An attempt is made

to answer this question here.

An s-equation with an additional term to account for vortex stretching has been proposed by Bernard and
0

Speziale (1992). It is derived from the equation governing the behavior of enstrophy a_- = o),_i in isotropic

turbulence and the identity g = t,_:o2. Thus derived, the additional term depends on the fluid kinematic viscos-

ity, t,, and the modified g-equation for turbulent buoyant shear flows becomes

~ 7 C* _,2

dt 3v/_ _/_ "

The model constants take on the following values: C_l = 1.44, C_2 = 1.83. C_*3 = 0.01 and C_3 = 1.44. The

vortex-stretching term renders the solution a function of the initial turbulent Reynolds number Re (So el al.,

1999). This is obviously not the case, even for pure shear flows. An alternative to this proposal is given
by ( 1 I ). The additional term in ( 11 ) could be simplified to give a term quite similar to the one proposed

by Bernard and Speziale (1992) and yet not dependent on the initial turbulent Re. Since the leading term

in 8dijSij is a constant times kSijS 0 and k2SoSi-/g 2 is a constant fbr homogeneous shear flows the term
k2 ' ,' _ , _ _., . . .( " . , . " ,. •,(S,'/Sii)- could be related to g-SijSij. Thus modified, the g-equatmn (11 ) could be written as

_ 6̀ 2dg g g

d-T = C, __ P + C4 ,/22t &/&/) _/2_ _ Ce _ - G_ _,A_'_"; O, (20)
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where Ce4 = 0.042 is a model constant that yields the best predictions for pure shear flows.
In the following, AD is used to denote the e-equation (20) and the SSG closure that solves (20) is

designated as SSG/AD. In this closure the dissipation rate tensor is still modeled by (5). Thus, SSG/AD
represents a lirst attempt to approximate the effect of anisotropic dissipation. If the results come out to be
similar to those given by SSG/SG, then there is no need to solve (6!, (8) and (9). The performance of (20)
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has been validated against the measured decay of k/ko with time (Tavoularis and Karnik, 1989) by So et al.

(1999), where k0 is the initial value of k. Other closures used to calculate the same flow include 2-Eq, 1R

SSG, SSG/HGJ and SSG/BS. The SSG/BS closure is the same as SSG but solves the g-equation (19) in-

stead of (10). The SSG/AD and SSG/BS closures were found to yield good agreement with experimental

measurements. All other closure models did not. However, the SSG/BS closure suffers from the shortcoming

of being dependent on the initial Re. This cannot be the case for long time.
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With a new proposal to account for anisotropic dissipation, the ability of the SSG model to predict equi-
librium states of turbttlent buoyant shear flows is greatly improved. If (20) instead of (10) is used with the IP

and SSG models, the calculations show" that they can predict the approach to equilibrium turbulence much

like the SSG/SG closure, i.e. at equilibrium P/e, P,/_,, R, G/e, Sk/e and S_-/_', all approach constant.
The results of these calculations are shown in Figures 17-20. Altogether. five closure calculations are shown.

they are SSG. SSG/AD, SSG/SG. IP/AD and SSG/BS. The variations of R, P/_, P,/_:,, G/_:, Sk/_ _and

SO2/_:, with Ri are plotted in Figures 17, 18(a), (b), 19, and 20(a), (b), respectively. From these results, it

is obvious that SSG/BS cannot predict equilibrium turbulence with R, Sk/e and SO2/e,) becoming constant
simultaneously, even though ['/e, ['_/_, and G/_ also achieve constant behavior. It appears that the R pre-

diction of SSG/AD is very close to_that of SSG/SG. This is also true for IP/AD. On the other hand, the

SSG/AD predictions of Sk/e and S02/e, are higher than those given by SSG/SG by a factor of 2. The pre-

dicted behavior and magnitudes of fi_/e,, [_o/eo and G/_ given by SSG/SG, SSG/AD and IP/AD are very

similar. It can be seen that all closures tested give a decreasing trend for /5/_. and fi,/6:, with Ri, but an

increasing trend with Ri for R. The predictions, therefore, imply that the production of k and el2 decreases

faster than their dissipation as Ri increases. These results tend to suggest that the modeling of _:(i has an
effect on the prediction of equilibrium turbulence, it is important to account for anisotropic dissipation, how-

ever, it is not necessary to model the effect in e(i directly: it could be approximately accounted for in the
_-equation.

Conclusions

This investigation of the effects of turbulence models on the prediction of equilibrium states of buoyant shear
flow leads to the following conclusions:

(a) The equilibrium turbulence state defined by dbij/dt = 0 and dqi/dt = 0 leads to R, fi/_:, P#/e#, G/e
and Sk/_ becoming constant at equilibrium, consistent with the analysis of Zhao et al. (2001).

(b) Among the different modeled e,-equations considered, only three groups could lead to the prediction

of equilibrium turbulence when a 2-Eq closure is used. If the velocity field is closed by SSG/SG, only
one group of models could give rise to equilibrium turbulence. In this group only the JM model would
predict equilibrium turbulence alter a relatively short period of time.

(c) All other closures, IE SSG, SSG/SG and SSG/HGJ, even in conjunction with JM, could not predict the
approach to equilibrium turbulence.

(d) It is found that variations in the modeling of the pressure-strain tensor and the pressure-scrambling
vector have little or no effect on the prediction of the approach to equilibrium turbulence. The actual

predictions of the equilibrium values may differ slightly though.

(e) The SSG/AD and IP/AD closures can predict the approach to equilibrium tt.rbulence just like that of

SSG/SG. This suggests that a simple accounting tor anisotropic dissipation behavior could be accom-
plished through a suitable modification of the _'-equation.
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